
Technical Report
ECT94OCMU/SEI-94-TR-1 0

00-

Toward Deriving Software Architectures
From Quality Attributes

Rick Kazman, University Of Waterloo
Len Bass, Software Engineering Institute

/ August 1994

\94 P 1\4\6



Carnegie Mellon ULn've'sity does not discriminrate and Carnegie Mellon Unversity ,s eauired not to disc,'•rnate ,n adnission. employment or administration
of Is orogra~ns on :te Oasis of race color national origin sex o" hano~cap ri violation of Tite V1 of the Cvi Rights Act of '964 Tile IX of the Educational
Amerndments o' 1972 and Sect or' '-04 of !Pe Renao,irtation Act of 1973 o, other 'ederal state or iocal aws. or executive orders

in addition Carnegie Mellon Univesty does not discr minale in admission emp'oyrncnt or administration of Its orograms on the basis of religion creec
ancestry. belief, age veteran status sexuai orientation or rn violation of federal state or Ioca, laws of executive orders While the federal government does
continue to exclude gays lesbians and bisexuals frorr receiving ROTC scholarships or serving ýn the military ROTC classes on this campus are available to
ei students

InQuiries concerning apolication of these statements should be directed to the Provost. Carneg-e Mellon University, 5000 Forbes Avenue. Pittsburgh Pa
15213 telephone (412) 268-6684 or the Vice President for Enrollment Carnegie Mellon University. 5000 Forbes Avenue Pittsburgh. Pa 15213. telephone
(412) 268-2056



Technical Report
CMU/SEI.94-TR-1O

ESC-TR-94-)10
August 1994

Toward Deriving Software Architectures
From Quality Attributes

Rick Kazman, University Of Waterloo

Len Bass, Software Engineering Institute

Software Architecture Attribute Engineering Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Camegie Mellon University

Pittsburgh, Pennsylvania 15213



This report was pre1 ,or the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific anc ,chnical information exchange.

Review and Approval

This report has been reviewed and is approved for Iablication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright C 1994 by Carnegie Mellon University

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994.

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly. National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (I)TIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Atn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.



Table of Contents

1 Software Quality Attributes 1

2 Non-Functional Qualities and Architecture 3

3 With Respect to What? 5

4 Operations for Realizing Quality Attributes 7
4.1 Separation 7
4.2 Abstraction 8
4.3 Compression 8
4.4 Uniform Composition 9
4.5 Replication 9
4.6 Resource Sharing 10
4.7 Unit Operations and Quality Attributes 10

5 Constructing Software Architectures: Case Studies 13
5.1 User Interface Management Systems 13
5.2 Compilers 17

6 Conclusions and Future Work 21

7 Acknowledgments 23

References 25

Appendix A Unit Operations and Quality Attributes 27
A.1 Scalability 28
A.2 Separation 28
A.3 Modifiability 28
A.4 Integrability 29
A.5 Portability 30
A.6 Performance 31
A.7 Reliability £eusonloa For 32
A.8 Ease of Creation IfIS GRA&I 33
A.9 Reusability DIU TAB 0 34

Unanxourioed 0
Justification

Availability Qedes
"c- aail and/or

CMU/SEI-94-TR-1 0



CMUISEI-94-TR-1 0



List of Figures

Figure 5-1: Creation of Software Architectures Based On Quality Attributes 13
Figure 5-2: Functional Representation of a System 14
Figure 5-3: Abstraction of the Presentation 14
Figure 5-4: Abstraction of the Dialogue 15
Figure 5-5: The Final UIMS Functional Partitioning 16
Figure 5-6: Application of Uniform Composition to Dialogue 17
Figure 5-7: Functional Decomposition of Compiler 18
Figure 5-8: Applying Abstraction to Functional Decomposition of Compiler 18
Figure 5-9: The Final Compiler Architecture 19

CMU/SEI-94-TR-1 0ii



iv CMU/SEI-94-TR-1 0



Toward Deriving Software Architectures From Quality
Attributes

Abstract: A method for deriving software architectures from a consideration of
the non-functional qualities of the system is presented. The method is based
on identifying a set of six "unit operations" and using those operations to
partition the functionality of the system. These unit operations were derived
from the literature and from expert practice. The relationship between the unit
operations and a set of eight non-functional qualities is explored. Evidence is
provided for the validity of the method by using it to derive six well-known
architectures from the areas of user interface software and compiler
construction.

Software Quality Attributes

When creating a new software architecture for some application domain, system designers of-
ten justify their creation by claiming that it supports, and even promotes, certain qualities, often
called non-functional qualities. These qualities-things like portability, reusability, perfor-
mance, modifiability, and scalability [DOD 88]-are supposed to be automatically conferred on
any system that is realized using the architecture.

However, there has been little research focussed on the question of precisely how it is that a
software architecture realizes and promotes these qualities. Designers typically rely on their
intuition and experience. They often appeal to ad hoc arguments to justify their design deci-
sions. This doesn't mean that their design decisions are wrong or that they routinely create
inferior architectures; experienced designers regularly create good architectures. What it does
mean is that theirs is a black art, a skilled craft, a knack learned only after years of hard-won
experience. This view of design as an apprenticeship is common in software engineering.

The beliefs that underlie this paper are that

"* The achievement of non-functional qualities of a system are intimately
connected with the software architecture for that system.

"* These qualities can be achieved through the appropriate application of a set
of "unit operations."1

"* Specific architectures can be derived from an understanding of the unit
operations and the non-functional qualities to be achieved by that
architecture.

1. The term "unit operations" is chosen by analogy with Chemical Engineering [Shaw 90]. These are structure

transforming operations that are ubiquitous in the design of software systems.



Note that we are saying that non-functional qualities influence the software architecture, not
that non-functional qualities are achieved exclusively by architectural means. The achieve-
ment of non-functional qualities is attributable to many factors (such as coding styles, docu-
mentation, testing, etc.), but the larger the system, the more the achievement of non-functional
qualities rests in a system's software architecture [Abowd 93].

Our objective in this paper is to provide evidence that these beliefs are well founded. We do
this in two ways:

1. We argue that the achievement of non-functional qualities is the primary mo-
tivator for the architecture of large, complex systems.

2. We provide a sek' of candidate unit operations; show through case studies
from well-understood, mature domains how these operations are manifested;
and derive from "first principles" well-known architectures in user interfaces
and compilers on the basis of these unit operations.

The unit operations that we propose are not new. They are operations used every day by ex-
perienced designers: separation, abstraction, composition, and so on. Our purpose is not to
define new primitives for building systems or to propose a notation or language for describing
architectures but to show how the operations realize software qualities. Our claim is that cod-
ifying derivations based on unit operations and their relationship with non-functional qualities
will allow the creation of architectures to become a rote activity as it is in traditional engineering
disciplines [Shaw 90], rather than an activity that is the special domain of wizards.

We are also interested in how qualities interact. Software qualities may be harmonic, may be
mutually incompatible, or may exist in a state of mutual tension. For example, a system that
attempts to maximize portability may sacrifice runtime performance; a system that is maximal-
ly scalable may achieve that quality at the cost of development efficiency. Although there is no
single right way to resolve these conflicts, we can at least make the architectural tradeoffs ex-
plicit. This will allow a designer to make architectural decisions based on an explicit set of pri-
orities-if portability is more important than performance, one sort of architecture results; if
performance is of paramount importance, a different architecture is created. Such tradeoffs
occur routinely in software development, but are seldom planned for, predicted, or explicitly
recorded [Lindstrom 93].

2 CMU/SEI-94-TR-10



2 Non-Functional Qualities and Architecture

In this section we explore the relationship between the software architecture of a system and
the non-functional qualities to be achieved by that system. We argue that there is an intimate
connection between a system's architecture and the ability to achieve particular non-functional
qualities within that system. Given the ambiguities in common usage of these terms, we first
will say explicitly what we mean by both "software architecture" and "non-functional qualities."

The software architecture of a system is the module-level design of that system ([Garlan 93],
(Perry 92])--in contrast to more traditional views of software that concentrate on comparatively
low-level details: data structures and algorithms. Software architecture can be understood by
viewing a system's modules in terms of their

* Functionality (and how that functionality is decomposed).

o Structure (its computational components and connectors, both data and
control).

o Allocation of functionality to its structure [Kazman 94].

o Coordination model [Gelernter 92]

The non-functional qualities of the system are orthogonal to the functionality of the system. We
view the functionality as the mapping of input to output generated by the system. This narrow
view throws into the non-functional realm any discussion of performance, modifiability, porta-
bility, scalability, and so on.

Our assertion that the system architecture is intimately connected to the achievement of non-
functional qualities should not be controversial. As systems grow in size and complexity, the
achievement of non-functional qualities resides increasingly in architectural decisions.

Parnas [Parnas 72] in his seminal paper on competing allocations of function to structure gave

as a canonical problem the creation of a KWIC (key word in context) index. Pamas presented
two different software structures that solve the problem and analyzed these solutions in terms
of their support for future modifications. Garlan and Shaw later extended Parnas' example to
four different architectures and examined these architectures with respect to modifiability, per-
formance, and reuse [Garlan 93]. The architectures presented were all capable of performing
the functionality desired; the distinctions among them were based on their satisfaction of non-
functional qualities.

The experience of expert software designers at the Software Engineering Institute has corrob-
orated the view that non-functional qualities "live" in a system's software architecture.

CMU/SEI-94-TR-10 3



4 CMU/SEI-94-TR.1 0



3 With Respect to What?

One difficulty in discussing software qualities is that they do not exist in the abstract, and can-
not be described in the abstract. They are manifested in software and hardware and they exist
within an environment of user and institutional needs: tasks to be achieved and anticipated us-
age. Thus, when we speak about a quality such as modifiability, we can only discuss designing
for a specific set of anticipated modifications. This will be based on our experience witli similar
systems and how these systems tend to grow and change over time. Similarly, when we speak
about optimizing for performance, we always think of performance in terms of well-understood
problem areas---database query optimization, file merging, semantic feedback in user inter-
face systems, compiler code optimization.

As a consequence, when we analyze an architecture or want to build an architecture, we can't
simply say "portability is important," or even "portability is most important." While we definitely
need to make both types of decisions--determining the quality attributes of interest and prior-
itizing them-we must couch these decisions in terms of anticipated usage scenarios. In other
words, we must create a set of benchmark tasks for each quality attribute that typify the mod-
ifications, efficiency requirements, or changes of platform that the architecture must support.
This grounds our claims of scalability or reliability or portability in terms of actual anticipated
needs.

CMU/SEI-94-TR-10 5



6 CMU/SEI-94-TR-1 0



4 Operations for Realizing Quality Attributes

To justify our belief in the existence of unit operations from which a software architecture can
be derived, we will present six candidate unit operations-separation, abstraction, uniform
composition, resource sharing, replication, and compression-and discuss them in terms of
their effects on non-functional qualities. In particular, we are interested in:

"* The unit operations necessary to achieve a chosen quality attribute in
isolation.

"• The justification for these operations.

"* The effects on an architecture of combining quality attributes.

We now describe and explain the motivation for each unit operation. In Section 5 we will show,
through case studies of compiler and user interface software, how desired non-functional qual-
ities have been achieved through the application of these unit operations.2

4.1 Separation

Separation is a unit operation that places a distinct piece of functionality into a distinct compo-
nent that has a well-defined interface to the rest of the world [Parnas 72]. The separation op-
eration has been applied whenever an architecture contains more than one module.
Separation isolates a portion of a system's functionality. The portion of a system's functionality
that is isolated is determined by the desire to achieve certain quality factors.

For example, separation can be used to ensure that changes to the external environment do
not affect a component, and changes to the component do not affect the environment, as long
as the interface is unchanged. This is reflected in Table 1 by the + marks for portability and
modifiability.

Common examples of separation are found in

"* Data flow architectures [Garlan 93] (pipes and filters and batch sequential
systems).

"* Old-fashioned compilers [Aho 87] where each compilation phase--lexical
analysis, syntactic analysis, code generation, etc.-was a separate process.

"* User interface management systems [Pfaff 85], where presentation, dialogue
and application concerns are separated.

2. Our choice of terms for unit operations is meant to suggest an operational view of existing structural patterns.

For example, the term separation comes from the existing notion of separation of concerns.

CMU/SEI-94-TR-10 7



4.2 Abstraction

Abstraction is the operation of creating a virtual machine. A virtual machine is a component
whose function is to hide its underlying implementation. Virtual machines [Dijkstra 68] are of-
ten complex pieces of software to create, but once created can be adopted and reused by oth-
er software components, thus simplifying their creation and maintenance (because they
reference a set of abstract functionality).

Virtual interfaces are found anywhere there is a need to emulate some piece of functionality

that is non-native; for example, to simulate a parallel computation on a single processor. An-
other common use of virtual interfaces is in layered systems. For example, in the ISO OSI (In-
ternational Organization for Standardization open systems interconnection) model, lower
layers provide a virtual interface to higher layers-a generic, idealized functionality that hides
implementation details. A third use is to provide a common interface to a heterogeneous set
of underlying implementations.

For example, virtual toolkits are becoming quite common features of user interface manage-
ment systems. If one wanted to run an application on platforms that supported X11, Open-
Look, MS-Windows, and the Macintosh toolkit, one would likely define a virtual interface
between the system's presentation and the rest of the functionality [Rochkind 92]. In this way,
the user interface portion of the software is only written once, in terms of an abstract virtual
toolkit for the user interface.

4.3 Compression

Compression is the operation of removing layers or interfaces that separate system functions,
and so it is the opposite of separation. These layers may be software (process boundaries,
procedure calls) or hardware (separate processors). When one compresses software, one
takes distinct functions and places them together. The history of software engineering and
computer science has tended away from compression: abstract data types, the client-server
paradigm, distributed and parallel computing, and object-oriented development are all exam-
ples of the addition of layers (i.e. separation).

Compression serves two main purposes:

1. To improve system performance (by eliminating the overhead of traversing
the layers between the functions). For example, Lindstrom discusses the use
of layer elimination to meet performance goals in a fault-tolerant, real-time
system [Lindstrom 93]. Other examples of compression for performance in-
clude semantic feedback in user interface systems and layer straddling in
communication protocols.

2. To speed system development (by eliminating the requirement that different
part of a system's functionality be placed in separate software components).
For example, Microsoft's Visual Basic [Euler 91] allows a developer to directly
couple individual user interface objects to application code.

8 CMU/SEI-94-TR-10



A common technique for automatically achieving compression is the use of macros or inline
procedures.

4.4 Uniform Composition

Composition is the operation of combining two or more system components into a larger com-
ponent. Uniform Composition is a restriction of this operation, limiting the composition mech-
anisms to a small set. Having uniform composition mechanisms eases integration of
components and scaling of the system as a whole.

For example the Model-View-Controller (MVC) paradigm [Krasner 88], the abstraction u
the Smalltalk language, decomposes a user interface into a set of uniform abstractions each
of which contains a model (an application), a view (a presentation), and a controller (which
maps between the two as well as between a hierarchical decomposition of MVC triples). Sim-
ilar mechanisms have been used in the PAC (presentation abstraction control) paradigm
[Coutaz 87].

Uniform composition has also been shown to be a powerful tool in the flight simulator domain
for allowing large-scale systems to be composed from their subsystems and components, and
for allowing them to be cleanly integrated [Abowd 93].

4.5 Replication

Replication is the operation of duplicating a component within an architecture. This technique
is used to enhance reliability (fault tolerance) and performance. This unit operation is used in
hardware as well as software. When components are replicated, it requires the simultaneous
failure of more than one component to make the system as a whole fail. As the amount of rep-
lication in a system increases, the available work can be spread among more of the system's
components, thus increasing throughput; however the chances of a single component failing
increase dramatically.

The qualities of reliability and performance are in a mutual state of tension: reliability is in-
creased through increased redundancy (i.e., having several components perform the same
operation), whereas performance may be increased through increased parallelism (i.e., divid-
ing a single function among several components). In the latter case, the failure of any of the
parallel components may cause the entire operation to fail. Thus reliability and performance
are in mutual tension. For example, disk array technology uses replication to enhance the per-
formance of disk storage systems and to ensure that reliability is maintained (but it does not
optimize either quality). Although a single disk drive will have a mean time to failure of 20-100
years, the mean time to failure of a non-redundant disk array may be on the order of only
months or weeks [Ganger 94].

CMU/SEI-94-TR-10 9



Examples of replication in software exist for both fault tolerance and performance. As an ex-
ample of fault tolerance, the ISIS system (Birman 93] provides mechanisms for redundancy of
both computation and communication. An example of replication for performance is the com-
mon use of data caching.

4.6 Resource Sharing

Resource sharing is an operation that encapsulates either data or services and shares them
among multiple independent consumers. Typically there is a resource manager that provides
the sole access to the reso',rce. Shared resources, while they are often initially costly to build,
enhance the integrability, portability, and modifiability of systems, primarily because they re-
duce the coupling among components.

Common examples of shared software resources are databases, blackboards, integrated
computer-aided software engineering (CASE) tool environments, and servers (in a client-serv-
er system). In each of these cases, shared resources enhanced the integrability of the system.

For example, data repositories such as blackboards and databases are shared resources
where the resource is persistent data to be stored and retrieved. Security kernels also manage
shared resources, typically access to privileged system data and functionality. Integrated
CASE environments rely on the notion of a "tool bus" or an explicit shared repository [Wasser-
man 89] to allow easy integration of tools.

4.7 Unit Operations and Quality Attributes

Given the above analyses, we now present a table of eight non-functional qualities and six unit
operations. In each cell of the table, we indicate whether the desired quality is promoted by
the unit operation (as indicated by a +) or inhibited by the unit operation (as indicated by a -).

For cases in which the unit operation has no predictable effect on a quality attribute, we leave
the cell empty or indicate both possible effects, depending on some other considerations.

Table 1: Quality Factors Versus Design Operations

Software Quality Factor
Unit Operation Scalability Modifiability Integrability Portability Performance Reliability Ease of Reusability

Creation

Separation + + + + +1- +/- +

Abstraction + + + + - + +

Compression - I - + +/- -

Uniform + + +
Composition

Replication - +/- +

Resource + + + +/ - + +/-
Sharing

10 CMU/SEI-94-TR-10



Each cell of this table is, in effect, a separate claim about the effect of a unit operation on a
system's qualities in isolation. These claims are argued in the appendix. It should also be not-
ed that not all unit operations are orthogonal. For example, resource sharing, uniform compo-
sition, and abstraction are all specializations of separation.

CMU/SEI-94-TR-10 11



12 CMU/SEI-94-TR-1 0



5 Constructing Software Architectures: Case Studies

To construct a software architecture that realizes some set of non-functional qualities, we must
first understand the ramifications of each quality of interest. In particular, we must understand
how the functional partitioning is affected by each quality attribute. As wo have already said,
this process is currently done intuitively by software developers.

We will now present a method for understanding these architectural decisions and hence for
creating architectures. At an abstract level, the method consists of transforming non-functional
requirements into allocations for each quality attribute in isolation, and then composing these
individual allocations into a complete architecture, as shown in Figure 5-1:.

[RequirementsI

C Allocation 1 C Allocation 2 ) ... Allocation n

(Com ose

Architecture

Figure 5-1: Creation of Software Architectures Based On Quality Attributes

We will exemplify the processes involved in this method (the tasks enclosed in ovals in Figure
5-1) in the following sections.

5.1 User Interface Management Systems

Since the user interface is frequently modified and user interfaces are often ported from toolkit
to toolkit, user interface management systems (UIMSs) must support modifiability and porta-
bility.3 The first steps in designing an architecture to meet these non-functional quality goals
is to adopt a provisional functional analysis for the user interface system and analyze the na-
ture of modifiability and portability in this domain.

There are at least two separate kinds of functions that any system with a user must provide:
presentation (interaction with the user), and application (the underlying purpose of the system)
[Pfaff 85]. It has been further noted that there are temporal and hierarchical aspects to human-
computer interaction-the main task to be accomplished by the user (compose a document,

. For example, this paper is being composed using a desktop publishing package that runs on Unix/Motif, MS
Windows, and Macintosh platforms. The functionality is the same on each platform. Only the presentation dif-
fers.

CMU/SEI-94-TR-1 0 13



create a spreadsheet, send mail) is broken down into sub-tasks (create a new file, modify a
column, type z paragraph), which are further subdivided until we arrive at the level of physical
actions (type a character, click on an icon, pull down a menu) that the user performs on the
presentation. This decomposition and sequencing can be thought of as a dialogue between

the user and the application. Thus dialogue is a third type of function that every interactive sys-
tem must support.

We say nothing at this point about how these functions are partitioned. One can think of a pure-
ly functional representation of a system as having the structure shown in Figure 5-2 below.4

The functions are lumped together in a single structural component. However, given that we
want to design our system with modifiability and portability in mind, we will invoke the unit op-
erations of separation and abstraction. We now turn to this task.

Presentation

Dialogue

Application

Figure 5-2: Functional Representation of a System

As discussed in Section 3, non-functional qualities are abstract; they are conceptual catego-
ries. To make them meaningful for a particular application domain, they must be reified as par-

ticular tasks [Kazman 941. In the user interface domain, we can identify two types of portability
concerns: replacing the presentation toolkit (which is quite common) and replacing the appli-
cation (which is rather more rare).

To plan for portability, we want to mitigate the effects of replacing the presentation toolkit.
Thus, we use the abstraction operation to isolate the presentation in its own component (typ-
ically a shared resource). At this point, our functional partitioning looks like this:

Presentation

Dialogue
Application

Figure 5-3: Abstraction of the Presentation

4- In this diagram and those that follow, a box indicates a collection of functionality and an arrow indicates an
association among functions, such as data flow.

14 CMU/SEI-94-TR-1 0



To insulate against modifications to the dialogue (typically the most heavily modified portion
of an interactive system), or modifications to the application, we once again appeal to the op-
eration of abstraction: we isolate the dialogue into a separate component. Our functional par-
titioning now looks like this:

Presentation

Dialogue

Application

Figure 5-4: Abstraction of the Dialogue

5.1.1 Seeheim
We have now derived the basis of the Seeheim model of UIMSs [Pfaff 85] from the application
of unit operations. The derivation of well-known software architectures from unit operations is
our validation of the construction technique presented in Figure 5-1. By linking non-functional
requirements to unit operations, we have derived the same architectures as those derived by
experienced designers.

This does not imply that the above model is ideal, however. Implementations of the Seeheim
model have well-documented problems. For example, given that the presentation and dia-
logue have been separated, there arises the possibility of their interaction. When one replaces
the presentation toolkit, one should not have to rewrite the dialogue to use the idiosyncratic
objects and attributes of the new toolkit. Similarly, if one modifies the dialogue, one does not
want to have to maintain several related modifications, one per toolkit used.

Thus, to mitigate the interaction of portability and modifiability (changing the toolkit and modi-
fying the dialogue), we appeal to another unit operation: abstraction. We make the connection
between the presentation and dialogue components indirect. To accomplish this, we insert a
function between the presentation and dialogue that maps between the two, manifesting a vir-
tual presentation toolkit to the dialogue, thus forcing the dialogue to conform to the abstrac-
tions presented by the virtual toolkit.

Finally, we can consider another type of potential modification. If the application is replaced
frequently (for example in an interface to a multi-database), one would once again appeal to
the mechanism of abstraction, inserting a component between the application and the dia-
logue that maps between the two in the same way that a virtual user interface toolkit maps
batween the presentation and dialogue. We have called this function a virtual application, on
analogy with a virtual toolkit. These layers buffer the dialogue from changes in the operating
environment.

CMU/SEI-94-TR-10 15



The final functional partitioning engendered by our set of benchmark tasks and our primitive
mechanisms for modifiability is shown in Figure 5-5.

Presentation

Virtual Toolkit

Dialoge

Virtual Application

Application

Figure 5-5: The Final UIMS Functional Partitioning

5.1.2 Arch/Slinky
We have now derived the Arch/Slinky model of user interface management systems [UIMS 92]
entirely from first principles. Each of these models, Seeheim and Arch/Slinky, were created by
a group of experts in the field of user interface software. What we have done is given a method
whereby even a non-expert can derive such models by the application of architectural unit op-
erations. Note that what we have in Figure 5-5 is not yet a software architecture; it is a func-
tional partitioning with an indication of data flow. We have not specified the software structure
into which this functional partitioning maps.

This functional partitioning suggests an architecture that strongly supports the qualities of
modifiability and portability. The degree to which the software structure maintains the function-
ai partitioning will affect the eventual success of the architecture with respect to these qualities
[Kazman 94].

5.1.3 PAC
Up until now we have been presenting and rationalizing our functional decomposition with re-
spect to modifiability and portability. What happens if we add another non-functional quality
requirement to the mix? For example, given that the dialogue component in an interactive sys-
tem is large, complex, and continually modified, we would like that component to support the
quality of scalability. Appealing to Table 1, we can see that the quality of scalability is ad-
dressed by the unit operations of separation and uniform composition. From the descriptions
of each unit operation in sections 4.1 through 4.6, we can see that uniform composition is a
refinement of separation, and so is a stronger operation than separation.

Thus uniform composition is the most applicable unit operation for ensuring scalability of a sin-
gle component. We will apply this operation to the dialogue, thus allowing the dialogue to be
decomposed into manageable, codable chunks, each of which can then be re-integrated to

16 CMU/SEI-94-TR-10



the whole through a regular composition mechanism [Krasner 88]. A regular hierarchical com-
position mechanism is one such example. By adding uniform composition to the dialogue com-
ponent, we derive a functional decomposition as follows:

Presentation

Virtual Toolkit

Dialogue

Virtual Application

Application

Figure 5-6: Application of Uniform Composition to Dialogue

We have now arrived at the PAC-AMODEUS model of user interface software [Nigay 91] from
the application of unit operations. This model, the result of several years of research and ex-
perience, was explicitly designed to promote modifiability, portability, and scalability of the di-
alogue component.

5.2 Compilers

We now turn to a historical examination of the software architectures of compilers in terms of
how these architectures address non-functional requirements. Or, to put it another way, we
will reconstruct the history of compiler development as driven by non-functional requirements
and their realization in unit operations. We use this example because compiler software archi-
tecture is well understood and extensively studied ([Aho 87], [Garlan 93]), but the evolution of
compiler software architecture has not been studied as a reaction to non-functional require-
ments.

Early compilers performed two functions: analysis of the source language and synthesis of
machine code. As compiler construction became relatively well understood, the analysis por-
tion was subdivided into the following functions: lexical analysis, syntactic analysis, and se-
mantic analysis. The synthesis portion typically consisted of code generation and optimization.
These functions (or phases, as they're often called) had to be constructed and modified inde-
pendently of each other. Thus, to promote the non-functional quality of modifiability, the unit
operation of abstraction must be applied.

CMU/SEI-94-TR-10 17



What results is a functional decomposition typical of the 1970s state of the art in compiler con-
struction:

Souc Lexical Syntactic Semantic Cod Geert o de

!I Analysis Analysi nsis is / Optimization

Figure 5-7: Functional Decomposition of Compiler

Each phase is separate and runs to completion before the next phase starts. Results are
passed from phase to phase through intermediate files.

However, compilers are complex and costly pieces of software to create. Thus, it is natural that
an organization creating a compiler would want to amortize the investment in creating a com-
piler over many different products (compilers for different hardware platforms). This means
that the compiler must be portable. Once again, appealing to Table 1 and the following sec-
tions we can see that the unit operation of abstraction is most appropriate to apply here to en-
gender portability. Essentially we would like the interface between the analysis and synthesis
functions to be indirect. To realize abstraction, we insert a function between semantic analysis
and code generation/optimization that takes the results of semantic analysis and translates
this into generic machine code. The generic code can then be optimized and translated into
machine-specific code, resulting inr the functional decomposition shown below.

Source F- Syntactic Semantic Intermediate Oi ri Code

I Analysis Analysis Code Gen

Figure 5-8: Applying Abstraction to Functional Decomposition of Compiler

The addition of the non-functional requirement of portability resulted in a functional decompo-
sition that represented the state of the practice in compiler construction by the mid-1980s.
Throughout the 1980s, however, maiy of the changes in compiler development resulted from
the need to turn a compiler from a 3tand-alone tool into 'the heart of a suite of language-direct-
ed tools. Thus, the non-functional quality attribute of integaability became important to compiler
software architecture.

18 CMU/SEI-94-TR-10



To deal with this requirement, we can appeal to the unit operation of resource sharing. In par-

ticular, it is necessary to share the attributed parse tree and symbol table that the compiler cre-
ates and annotates during its various phases. This results in a very different software
architecture, centered around the shared resources, as shown in Figure 5-9 below (adapted
from [Garlan 93]).5 This architecture now supports additional tools, such as structured editors
and code analysis tools.

SISemantic IntermediateL
]Syntactic Analysis Code Gen Optimi-I

source Lexical Symbol TableCoe odAnal..y ---is• Parse Tree Ge 00..

Stutum Debugigss

Figure 5-9: The Final Compiler Architecture

5 In Figure 5-9 the thin arrows represent data flow and the fat, grey arrows represent control flow. What this

means is that all communication between the phases is through the shared symbol-table/parse tree resource.

CMU/SEI-94-TR-10 19



20 CMU/SEI-94-TR-1 0



6 Conclusions and Future Work

In this paper we have given the first steps for a process for creating software architectures
from first principles. The principles, unit operations, are used for the achievement of non-func-
tional requirements. Clearly some architectural decisions are necessitated by functional re-
quirements, in which case the unit operations do not apply. However we have argued that, as
systems grow, non-functional requirements tend to dominate architectural decisions. Conse-
quently the software engineering field must find ways of addressing these requirements in a
predictable, repeatable fashion.

The interest of the unit operations and the architecture construction method given in Section
4 is that it gives developers a set of standard techniques for constructing software architec-
tures. We have also provided rationale for the use and application of each technique. Perry
and Wolf [Perry 92] have stressed the importance of connecting rationale with architectural de-
cisions, and we concur with this view.

In the future we can see several directions in which this work should be extended. We need
to have a way to connect architectures in general, and unit operations specifically, to program-
ming language issues (such as deferred binding and constraints). These language features
greatly affect the achievability of many unit operations. We would also like to extend the set of
unit operations and discuss their composition in more detail, addressing the tradeoffs that may
be necessary when non-functional requirements are in direct conflict with each other. Finally,
we would like to extend our analysis techniques to larger and less well-understood software
domains.

We do not believe that the six unit operations that we have discussed represent a complete
set. Obviously, we can't derive all architectures from this set. However we believe that this
work, and in particular the method that underlies the use of unit operations, shows promise in
making the achievement of non-functional properties predictable. Our confidence in this meth-
od is based on the fact that we were able to derive six different software architectures (three
each for compilers.and UIMSs) that represent the work and insight of expert developers over
many years.

CMU/SEI-94-TR-10 21



22 CMU/SEI-94-TR-1 0



7 Acknowledgments

We would like to thank Joe Batman, Reed Little, and Tom Ralya for sharing with us some of
their experience in software design. We would also like to thank Alan Brown, Paul Clements,
Peter Feiler, Gregory Abowd, and Nelson Weiderman for their helpful comments on an earlier
draft of this paper.

CMUISEI-94-TR-10 23



24 CMU/SEI-94-TR-1 0



References
(Abowd 93] Abowd, G.; Bass, L.; Howard, L.; & Northrop, L. Structural Modeling: an

Application Framework and Development Process for Flighty Simulators
(CMU-SEI-93-14, ADA271348). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

[Aho 87] Aho, A.; Sethi, R.; & Ullman, J. Compilers: Principles, Techniques, and

Tools, Reading, MA: Addison-Wesley, 1987.

[Birman 93] Birman, K. "The Process Group Approach to Reliable Distributed Comput-
ing."Communications of the ACM 36, 12 (December 1993): 37-53.

[Coutaz 87] Coutaz, J. "PAC, An Implementation Model for Dialog Design," pp. 431-

436. Proceedings of Interact '87. Stuttgart, Germany: September, 1987.

[Crispen 93] Crispen, R.; Freemon, B.; King, K.; & Tucker, V., "DARTS: A Domain Archi-

tecture for Reuse in Training Systems," pp. 659-668. 15th /ITSEC
Proceedings. San Antonio, TX: November 1993.

[Dijkstra 68] Dijkstra, E.W. "The Structure of the 'THE' Multiprogramming System."
Communications of the ACM 11, 5 (May 1968): 341-346.

[DOD 88] United States Department of Defense. Military Standard, Defense System

Software Development (DOD-STD-2167A). Washington, DC: United
States Department of Defense, 1988.

[Euler 91] Euler, L.; Maffei, E.; & Rauch, A. "Create Real Windows Applications in a

Graphical Environment Using Microsoft Visual Basic." Microsoft Systems
Journal 6, 4 (July 1991): 57-70, 116.

[Ganger 94] Ganger, G.; Worthington, B.; Hou, R.; & Patt, Y. "Disk Arrays: High-Perfor-

mance, High-Reliability Storage Systems." IEEE Computer 27, 3 (March
1994): 30-36.

[Garlan 93] Garlan, D. & Shaw, M. "An Introduction to Software Architecture," 1-39.
Ambriola, V. & Tortora, G (eds.), Advances in Software Engineering and
Knowledge Engineering, Volume I. Singapore: World Scientific Publishing,

1993.

[Gelernter 92] Gelemter, D. & Carriero, N. "Coordination Languages and their Signifi-

cance." Communications of the ACM 55, 2 (February 1992): 97-107.

[Kazman 94] Kazman, R.; Bass, L.; Abowd, G.; & Webb, S.M. "SAAM: A Method for Ana-
lyzing the Properties of Software Architectures," pp. 81-90. Proceedings of
ICSE 16. Sorrento, Italy: May 1994.

[Krasner 88] Krasner, G. & Pope, S. "A Cookbook for Using Model-View-Controller User
Interface Paradigm in Smalltalk-80." Journal of Object Oriented Program-
ming (August/September 1988): 26-49.

[Lindstrom 93] Lindstrom, D. "Five Ways to Destroy a Development Project." IEEE Soft-

CMU/SEI-94-TR-10 25



ware 10, 5 (September 1993): 55-58.

[Nigay 91] Nigay, L. & Coutaz, J. "Building User Interfaces: Organizing Software
Agents." ESPRIT '91 Conference. Brussels, Belgium: November 1991.

[Parnas 72] Parnas, D. "On the Criteria to Be Used in Decomposing Systems into Mod-
ules." Communications of the ACM 15, 12 (December 1972): 1053-1058.

[Perry 92] Perry, D. & Wolf, A. "Foundations for the Study of Software Architecture."

SIGSOFT Software Engineering Notes 17, 4 (October 1992): 40-52.

[Pfaff 85] Pfaff, G. (ed.). User Interface Management Systems. New York: Springer-

Verlag, 1985.

[Rochkind 92] Rochkind, M.J., "An Extensible Virtual Toolkit (XVT) for Portable GUI Appli-
cations," pp. 485-494. Digest of Papers, COMPCON (Spring 1992). San
Francisco, CA: Thirty-Seventh IEEE Computer Society International Con-

ference, February 1992.

[Shaw 90] Shaw, M. Prospects for an Engineering Discipline of Software (CMU-CS-
90-165). Pittsburgh, PA: Carnegie Mellon University School of Computer
Science, 1990.

[UIMS 92] UIMS Tool Developers Workshop. "A Metamodel for the Runtime Architec-

ture of an Interactive System." SIGCHI Bulletin 24, 1 (January 1992): 32-
37.

[Wasserman 89] Wasserman, A. "Tool Integration in Software Engineering Environments,"
pp. 137-149. Long, F. (ed.), Software Engineering Environments, Lecture
Notes in Computer Science No. 467. Berlin, Germany: Springer-Verlag,
1989.

26 CMU/SEI-94-TR-10



Appendix A Unit Operations and Quality Attributes
This appendix provides arguments for the table of the effects of unit operations on software
quality factors. Below is the table presented in Section 4.7 that presents the relationships.
Each cell of the table is a separate claim about the relationships between unit operations and
quality attributes, and we expand on these claims here. We are interested, primarily, in most
significant relationships between the quality factors and the unit operations. Thus, although
there are many second-order relationships, we leave cells of the table blank when only sec-
ond-order relationships exist. Furthermore, there may be mitigating factors in these relation-
ships, but we do not discuss them because they are typically minor effects. For example,

separation may have a positive effect or a negative effect on portability, depending on whether
the separation encloses and hides system dependencies or whether it cuts across them. In
our discussion of the quality attributes, we assume that unit operations are used in a way that
is consistent with their major effects.

Table 2: Quality Factors Versus Design Operations

Software Quality Factor
Unit
Operation Scalability Modifiability integrability Portability Performance Reliability Ease of Reusability

Creation

Separation + + + + +1- +/- +

Abstraction + + + + - + +

Compression - + +/- -

Uniform + + +
Composition

Replication - +/- + -

Resource + + + +/- - +
Sharing

Just as quality attributes do not exist in the abstract, these relationships do not exist in the ab-
stract. That is, modifiability cannot be accurately discussed without reference to specific types
of modifications to be performed. Abstraction as a unit operation to support modifiability as-
sumes that

"* There is a particular set of modifications under discussion.

"* The portions of the functionality of the system that are being separated and
abstracted are loosely coupled.

The assumption of specificity with respect to the quality attributes and the unit operations is

made in each of the sections below, and so we don't repeat it in each section.

We organize this discussion by the quality attributes.

CMU/SEI-94-TR-10 27



A.1 Scalability

Scalability is the ability of a system to support modifications that dramatically increase the size
of the system.

A.2 Separation

To have the ability to dramatically increase the size of a system and maintain intellectual con-
trol, the additions must be broken into smaller pieces, and these smaller pieces must have
specific interfaces with each other and with the original portion of the system. The existence
of interfaces is the hallmark of separation. Hence, a + in the table.

A.2.1 Abstraction
The use of abstractions promotes the ability to construct large systems. This is the rationale,
for example, for higher order language generations. Few people build large systems in assem-
bler any longer. They build large systems on top of more abstract machines. Hence, a + in the
table.

A.2.2 Compression
This is the reverse argument from that presented under separation. Very large systems cannot
be constructed without some form of separation. Thus, every removal of an interface makes
the system less easy to understand and inhibits scalability. Hence, a - in the table.

A.2.3 Uniform Composition
Very large systems are most easily constructed by having a small set of parts and combining
those parts in a similar fashion. This reduces the intellectual effort required to understand the
parts and to understand their interaction. The operation of uniform composition states that the
combination of parts should occur in a regular fashion. Hence, a + in the table.

A.2.4 Replication
Having multiple copies of either software components or functionality of a very large system
makes the system even larger and more difficult to comprehend. Hence, a - in the table.

A.2.5 Resource Sharing
Very large systems may have shared resources and can exist without shared resources.
Hence, no entry in the table.

A.3 Modifiability

Modifiability is the ability of a system to be extended to accomplish additional functionality.

28 CMU/SEI-94-TR-10



A.3.1 Separation
The creation of additional interfaces will enhance modifiability if it separates distinct pieces of
functionality into distinct software components. This is a rationale for object-oriented program-
ming and procedural abstraction. Hence, a + in the table.

A.3.2 Abstraction
The use of virtual machines is a technique that hides unnecessary detail and makes the addi-
tion of functionality easier to achieve as long as the new functionality

* is hidden in one of the virtual machines;
e can be achieved by composition of existing virtual machines; or
* can be achieved by the creation of a new virtual machine.

This is a common technique for supporting modifiability. Hence, a + in the table.

A.3.3 Compression
The removal of interfaces makes modifications more likely to have side effects. Hence, a - in
the table.

A.3.4 Uniform Composition
The fact that components may be composed in a systematic fashion does not pertain to the
ways in which functionality is divided among these components. Division of functionality is the
key to modifiability. Hence, no entry in the table.

A.3.5 Replication
Any modification that involves either replicated data or functionality must be performed twice,
once for each replicate. Hence a - in the table.

A.3.6 Resource Sharing
Modifications to data or functionality that is shared by multiple different consumers need only
be made once. This is the reverse of the argument used in replication. Hence, a + in the table.

A.4 Integrability

Integrability is the ability to easily integrate separate systems or components of a system.

A.4.1 Separation
The components to be integrated are, by definition, already separate. However, if these com-
ponents are broken into rational pieces of functionality, the integration of the components is
simplified because internal dependencies will be easier to disentangle. Hence, a + in the table.

CMU/SEI-94-TR-10 29



A.4.2 Abstraction
Abstraction is a means of achieving a common set of integration mechanisms. Hence, the
problem of integration is localized to the support of these common mechanisms. We reflect
this with a + in the table.

A.4.3 Compression
Integration of independently developed components is simplified by separating and exposing
the elements of those components that must communicate. Insofar as compression removes
this separation, it makes integration more difficult. Hence, a - in the table.

A.4.4 Uniform Composition
When the mechanisms for composing components are identical, it becomes easier to inte-
grate those components. Hence, a + in the table.

A.4.5 Replication
When functionality or data is replicated, integrating it with the remainder of the system adds
some difficulty. However, usually this effect is minor. Hence, no entry in the table.

A.4.6 Resource Sharing
A shared resource such as a shared database can become the integrating mechanism for a
system. New components can be integrated by defining how they interact with the shared re-
source. In this case, integration is simplified by the existence of a shared resource. This is
quite common in CASE tool environments, for example. Hence, a + in the table.

A.5 Portability

Portability is the ability of a system to execute on different hardware and software platforms.

A.5.1 Separation

Separation, if it encloses and hides platform dependencies, will help achieve portability.
Hence, a + in the table.

A.5.2 Abstraction

The use of virtual machines is a technique that hides unnecessary detail and makes portability
easier to achieve by hiding platform dependencies. Hence, a + in the table.

A.5.3 Compression
The removal of interfaces will merge platform-dependent and platform-independent imple-
mentations. This will make moving among hardware and software platforms more difficult.
Hence, a - in the table.

30 CMU/SEI-94-TR-10



A.5.4 Uniform Composition
The fact that components may be composed in a systematic fashion does not pertain to the
ways in which functionality is divided among these components. Localizing platform depen-
dencies is the key to portability. Hence, no entry in the table.

A.5.5 Replication

Any platform dependencies that involve either replicated data or functionality must be modified
twice to execute on another platform, once for each replicate. Hence, a - in the table.

A.5.6 Resource Sharing

Modifications for different platforms to data or functionality that is shared by multiple different
consumers need only be made once. Hence, a + in the table.

A.6 Performance

Performance is the measure of how well the computer system responds to its inputs. Common
measures are response time, resource utilization, and throughput.

A.6.1 Separation

Separation requires the creation of additional interfaces and, in this case, hinders perfor-
mance. On the other hand, parallelism is a technique used to improve performance, and the
achievement of parallelism requires separation. In this case, separation supports perfor-
mance. Hence, a +/- in the table.

A.6.2 Abstraction

The use of a virtual machine typically hinders performance because of the additional interface
created and its associated data marshaling. Hence, a - in the table.

A.6.3 Compression
The removal of interfaces helps performance by removing the overhead of context switching.
Hence, a + in the table.

A.6.4 Uniform Composition

The ability to easily compose components of a system has no effect on the runtime perfor-
mance of that system. Hence, no entry in the table.

CMU/SEI-94-TR-10 31



A.6.5 Replication

Replicating functionality or data can have both positive and negative effects on performance.
When functionality or data is replicated, any computation must either be performed on all rep-
licates or the results of any computation must be propagated to all replicates. In either case,
this is a negative effect. On the other hand, replication is a technique used to support parallel-
ism, and parallelism enhances performance. Hence, a +/- entry in the table.

A.6.6 Resource Sharing

Shared resources inhibit performance because access control to the resource adds additional
computational load. On the other hand, optimization techniques can be applied to the shared
resource and the performance of the system increased. Hence, a +/- entry in the table.

A.7 Reliability

Reliability is the ability of the system to sustain operations. A common measure is mean time
between failures.

A.7.1 Separation

The division of functionality into several portions has both positive and negative impact on re-
liability. The positive impact is that since functionality is organized into smaller pieces, testing
and the subsequent improvement of reliability becomes easier. The negative impact is caused
by the additional interactions among components that occur when there are more compo-
nents. In either of these cases, the impact is minor. Hence, no entry in the table.

A.7.2 Abstraction

The creation of abstractions has no significant effect on reliability. Hence, no entry in the table.

A.7.3 Compression

The removal of interfaces has the opposite impact from separation. Since the effect of sepa-
ration is minor, the effect of compression is also minor. Hence, no entry in the table.

A.7.4 Uniform Composition

The easy composition of components has no effect on the reliability of the resulting system.
Hence, no entry in the table.

A.7.5 Replication

Repeating functionality is one technique used to increase the reliability of systems because it
allows for some number of component failures before the system as a whole fails. Hence, a +
in the table.

32 CMU/SEI-94-TR-10



A.7.6 Resource Sharing
The sharing of resources creates larger dependencies on the reliability of the resource being
shared. The shared resource is a potential single point of failure. This is a problem for the re-
liability of the system as a whole. Hence, a - in the table.

A.8 Ease of Creation

Ease of creation is the difficulty of constructing the system. This is often measured in labor
hours.

A.8.1 Separation
Since additional interfaces require additional work, separating functionality in simple systems
increases the difficulty of creating a system. For complex systems, however, separation is a
necessity for understanding. Hence, a +/- in the table.

A.8.2 Abstraction
Creation of a virtual machine increases the possibility for sharing the resulting abstraction. As-
suming that the virtual machine is reused, abstraction will decrease the difficulty of creating a
system, since the virtual machine functionality must be implemented only once. Hence, a + in
the table.

A.8.3 Compression
Removal of interfaces reduces constraints on the developer of small systems and increases
the complexity of interactions in large systems. This is the reverse of the argument for sepa-
ration. Hence, a +/- in the table.

A.8.4 Uniform Composition
Having few mechanisms for composing components means that the developers need to have
mastered fewer mechanisms, and this simplifies the construction process. Hence, a + in the
table.

A.8.5 Replication
Replicating either functionality or data means that the developer must develop portions of the
system twice and be concerned w~th integrating these multiple portions. Hence, a - in the table.

A.8.6 Resource Sharing
Creation of a shared resource decreases the difficulty of creating a system since some func-
tionality must be implemented only once. Hence, a + in the table.

CMU/SEI-94-TR-10



A.9 Reusability

Reusability is the reuse of existing code in a current development. This is only one of a variety
of types of reuse, but it is the one most connected with the architecture of the system under
development.

A.9.1 Separation
The less a component does and the more constrained its relationship with its environment, the
higher the likelihood that it can be used in a subsequent development. Therefore, dividing
functionality increases the possibility of reuse. Hence, a + in the table.

A.9.2 Abstraction
Creating a virtual machine means that the components that use the virtual machine can have
a higher level of ignorance of their environment and can be implemented more quickly. Hence,
a + in the table.

A.9.3 Compression
Removing interfaces increases the functional dependencies of a component with its environ-
ment and thus decreases the likelihood that it can be used in a subsequent development.
Hence, a - in the table.

A.9.4 Uniform Composition

The ability to easily compose components is not one of the factors that determines whether
the components themselves can be reused. Hence, no entry in this table.

A.9.5 Replication
Replicating functionality or data increases the constraints under which a component can be
used and decreases the likelihood of reusing that component. Hence, a - in the table.

A.9.6 Resource Sharing

Sharing of resources increases the constraints on the components that use that resource. This
inhibits the reuse of these components. On the other hand, it requires that the manager of the
resource be usable by multiple consumers and this increases the likelihood that the resource
manager can be reused. Hence, a +/- in the table.

34 CMU/SEI-94-TR-10



UNLIMITED, UNCLASSIFIED
SECURrTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-94-TR-10 ESC-TR-94-010

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, state, and zip code)

Carnegie Mellon University HO ESC/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116

&a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F1962890C0003

SEI Joint Program Office ESC/ENS

8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 U rEMENT NO NO. NO NO.

P63756E N/A N/A N/A

11. TITLE (Include Secunty Classification)

Toward Deriving Software Architectures From Quality Attributes
12. PERSONAL AUTHOR(S)

Rick Kazman and Len Bass

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year. month, day) 15. PAGE COUNT

Final FOM TO August1994 34 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (continue on revese of neceasary and identify by block number)

FIELD GROUP SUB. GR. software analysis methods

software architecture
software construction

19. ABSTRAEI• (continue on reverse if necessary and identify by block number)

A method for deriving software architectures from a consideration of the non-functional qualities of
the system is presented. The method is based on identifying a set of six "unit operations" and using
those operations to partition the functionality of the system. These unit operations were derived from
the literature and from expert practice. The relationship between the unit operations and a set of
eight non-functional qualities is explored. Evidence is provided for the validity of the method by using
it to derive six well-known architectures from the areas of user interface software and compiler con-
struction.

(please tm over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/NLIMITED If SAME AS RQ DTIC USERS I Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include area code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/ENS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSFICATION OP This PACE



STRACT - canwrnad frau pops aim. blck 19


